Genetic programming for model selection of TSK-fuzzy systems

نویسندگان

  • Frank Hoffmann
  • Oliver Nelles
چکیده

This paper compares a genetic programming approach with a greedy partition algorithm (LOLIMOT) for structure identi cation of local linear neuro-fuzzy models. The crisp linear conclusion part of a Takagi-Sugeno-Kang (TSK) fuzzy rule describes the underlying model in the local region speci ed in the premise. The objective of structure identi cation is to identify an optimal partition of the input space into Gaussian, axis-orthogonal fuzzy sets. The linear parameters in the rule consequent are then estimated by means of a local weighted least squares algorithm. LOLIMOT is an incremental tree-construction algorithm that partitions the input space by axis-orthogonal splits. In each iteration it greedily adds the new model that minimizes the classi cation error. Genetic programming performs a global search for the optimal partition tree and is therefore able to backtrack in case of suboptimal intermediate split decisions. We compare the performance of both methods for function approximation of a highly non-linear two dimensional test function and an engine characteristic map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CREDIBILITY-BASED FUZZY PROGRAMMING MODELS TO SOLVE THE BUDGET-CONSTRAINED FLEXIBLE FLOW LINE PROBLEM

This paper addresses a new version of the exible ow line prob- lem, i.e., the budget constrained one, in order to determine the required num- ber of processors at each station along with the selection of the most eco- nomical process routes for products. Since a number of parameters, such as due dates, the amount of available budgets and the cost of opting particular routes, are imprecise (fuzz...

متن کامل

Structure Identi cation of TSK-Fuzzy Systems using Genetic Programming

This paper explores a new approach to structure identi cation of TakagiSugeno-Kang (TSK) Fuzzy Models. We employ Genetic Programming (GP) to nd an optimal partition of the input space into Gaussian, axis-orthogonal fuzzy sets. We compare the GP approach with a greedy partition algorithm (LOLIMOT) for modeling an engine characteristic map.

متن کامل

Local identification of prototypes for genetic learning of accurate TSK fuzzy rule-based systems

This work presents the use of local fuzzy prototypes as a new idea to obtain accurate local semantics-based Takagi–Sugeno–Kang ~TSK! rules. This allow us to start from prototypes considering the interaction between input and output variables and taking into account the fuzzy nature of the TSK rules. To do so, a two-stage evolutionary algorithm based on MOGUL ~a methodology to obtain Genetic Fuz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2001